Search Results

Documents authored by Derrien, Steven


Document
Hiding Communication Delays in Contention-Free Execution for SPM-Based Multi-Core Architectures

Authors: Benjamin Rouxel, Stefanos Skalistis, Steven Derrien, and Isabelle Puaut

Published in: LIPIcs, Volume 133, 31st Euromicro Conference on Real-Time Systems (ECRTS 2019)


Abstract
Multi-core systems using ScratchPad Memories (SPMs) are attractive architectures for executing time-critical embedded applications, because they provide both predictability and performance. In this paper, we propose a scheduling technique that jointly selects SPM contents off-line, in such a way that the cost of SPM loading/unloading is hidden. Communications are fragmented to augment hiding possibilities. Experimental results show the effectiveness of the proposed technique on streaming applications and synthetic task-graphs. The overlapping of communications with computations allows the length of generated schedules to be reduced by 4% on average on streaming applications, with a maximum of 16%, and by 8% on average for synthetic task graphs. We further show on a case study that generated schedules can be implemented with low overhead on a predictable multi-core architecture (Kalray MPPA).

Cite as

Benjamin Rouxel, Stefanos Skalistis, Steven Derrien, and Isabelle Puaut. Hiding Communication Delays in Contention-Free Execution for SPM-Based Multi-Core Architectures. In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 133, pp. 25:1-25:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{rouxel_et_al:LIPIcs.ECRTS.2019.25,
  author =	{Rouxel, Benjamin and Skalistis, Stefanos and Derrien, Steven and Puaut, Isabelle},
  title =	{{Hiding Communication Delays in Contention-Free Execution for SPM-Based Multi-Core Architectures}},
  booktitle =	{31st Euromicro Conference on Real-Time Systems (ECRTS 2019)},
  pages =	{25:1--25:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-110-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{133},
  editor =	{Quinton, Sophie},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2019.25},
  URN =		{urn:nbn:de:0030-drops-107626},
  doi =		{10.4230/LIPIcs.ECRTS.2019.25},
  annote =	{Keywords: Real-time Systems, Contention-Free Scheduling, SPM multi-core architecture}
}
Document
Fine-Grain Iterative Compilation for WCET Estimation

Authors: Isabelle Puaut, Mickaël Dardaillon, Christoph Cullmann, Gernot Gebhard, and Steven Derrien

Published in: OASIcs, Volume 63, 18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018)


Abstract
Compiler optimizations, although reducing the execution times of programs, raise issues in static WCET estimation techniques and tools. Flow facts, such as loop bounds, may not be automatically found by static WCET analysis tools after aggressive code optimizations. In this paper, we explore the use of iterative compilation (WCET-directed program optimization to explore the optimization space), with the objective to (i) allow flow facts to be automatically found and (ii) select optimizations that result in the lowest WCET estimates. We also explore to which extent code outlining helps, by allowing the selection of different optimization options for different code snippets of the application.

Cite as

Isabelle Puaut, Mickaël Dardaillon, Christoph Cullmann, Gernot Gebhard, and Steven Derrien. Fine-Grain Iterative Compilation for WCET Estimation. In 18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018). Open Access Series in Informatics (OASIcs), Volume 63, pp. 9:1-9:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{puaut_et_al:OASIcs.WCET.2018.9,
  author =	{Puaut, Isabelle and Dardaillon, Micka\"{e}l and Cullmann, Christoph and Gebhard, Gernot and Derrien, Steven},
  title =	{{Fine-Grain Iterative Compilation for WCET Estimation}},
  booktitle =	{18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018)},
  pages =	{9:1--9:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-073-6},
  ISSN =	{2190-6807},
  year =	{2018},
  volume =	{63},
  editor =	{Brandner, Florian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2018.9},
  URN =		{urn:nbn:de:0030-drops-97556},
  doi =		{10.4230/OASIcs.WCET.2018.9},
  annote =	{Keywords: Worst-Case Execution Time Estimation, Compiler optimizations, Iterative Compilation, Flow fact extraction, Outlining}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail